Many-body effects in the van der Waals–Casimir interaction between graphene layers
نویسندگان
چکیده
منابع مشابه
van der Waals forces between nanoclusters: importance of many-body effects.
van der Waals interactions between nanoclusters have been calculated with a self-consistent, coupled dipole method. The method accounts for all many-body (MB) effects. Comparison is made between the exact potential energy, V, and the values obtained with two alternative methods: the sum of two-body interactions and the sum of two-body and three-body interactions. For all cases considered, the t...
متن کاملCollective many-body van der Waals interactions in molecular systems.
Van der Waals (vdW) interactions are ubiquitous in molecules and condensed matter, and play a crucial role in determining the structure, stability, and function for a wide variety of systems. The accurate prediction of these interactions from first principles is a substantial challenge because they are inherently quantum mechanical phenomena that arise from correlations between many electrons w...
متن کاملvan der Waals interactions between thin metallic wires and layers.
Quantum Monte Carlo (QMC) methods have been used to obtain accurate binding-energy data for pairs of parallel thin metallic wires and layers modeled by 1D and 2D homogeneous electron gases. We compare our QMC binding energies with results obtained within the random phase approximation, finding significant quantitative differences and disagreement over the asymptotic behavior for bilayers at low...
متن کاملMany-body exchange-correlation effects in graphene
We calculate, within the leading-order dynamical-screening approximation, the electron self-energy and spectral function at zero temperature for extrinsic (or gated/doped) graphene. We also calculate hot carrier inelastic scattering due to electron–electron interactions in graphene. We obtain the inelastic quasiparticle lifetimes and associated mean free paths from the calculated self-energy. T...
متن کاملRipplocations in van der Waals layers.
Dislocations are topological line defects in three-dimensional crystals. Same-sign dislocations repel according to Frank's rule |b1 + b2|(2) > |b1|(2) + |b2|(2). This rule is broken for dislocations in van der Waals (vdW) layers, which possess crystallographic Burgers vector as ordinary dislocations but feature "surface ripples" due to the ease of bending and weak vdW adhesion of the atomic lay...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2011
ISSN: 1098-0121,1550-235X
DOI: 10.1103/physrevb.84.155407